Rabu, 18 Januari 2012

HUJAN METEOR ^_^

Hujan meteor

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Langsung ke: navigasi, cari
Hujan meteor adalah fenomena astronomi yang terjadi ketika sejumlah meteor terlihat bersinar pada langit malam. Meteor ini terjadi karena adanya serpihan benda luar angkasa yang dinamakan meteoroid, yang memasuki atmosfer Bumi dengan kecepatan tinggi. Ukuran meteor umumnya hanya sebesar sebutir pasir, dan hampir semuanya hancur sebelum mencapai permukaan Bumi. Serpihan yang mencapai permukaan Bumi disebut meteorit. Hujan meteor umumnya terjadi ketika Bumi melintasi dekat orbit sebuah komet dan melalui serpihannya
Meteor adalah penampakan jalur jatuhnya meteoroid (benda langit berupa debu, pasir dan batu kosmik) melintasi atmosfer bumi dan terbakar, kita biasa menyebut sebagai bintang jatuh. Juataan meteor selalu menghantam atmosfer setiap hari dan hangus terbakar. Meteor ini terlihat pada ketinggian 40 sampai 120 km diatas permukaan bumi.

Penampakan tersebut disebabkan oleh panas yang dihasilkan oleh tekanan ram (bukan oleh gesekan, sebagaimana anggapan umum sebelum ini) pada saat meteoroid memasuki atmosfer. Meteor yang sangat terang, lebih terang daripada penampakan Planet Venus, dapat disebut sebagai bola api. Bila lebih terang lagi disebut dengan "Bolide".

Meteor melaju dengan kecepatan 70 km per detik. Saat memasuki atmosfer Bumi, kecepatannya di perlambat oleh massa udara menjadi energi dan merubahnya sampai habis. Zat yang mudah menguap berubah menjadi gas dan meninggalkan jejak yang tampak jelas di angkasa.

Adakalanya meteor ini tidak terbakar habis di atmosfer sehingga sisanya jatuh ke Bumi dan biasanya disebut dengan batu meteor meteorit. Biasanya meteor terbakar antara 60-96% di atmosfer. Bumi kita memang diciptakan oleh Tuhan lengkap dengan pelindungnya.

Hujan dan badai Meteor dari rasi Leo

Patokan yang diambil untuk menentukan apakah itu badai atau hujan Leonid. Leonid merupakan meteor dari rasi Leo. Jika jumlah meteor kurang dari 200 per jam disebut dengan hujan Leonid, bila lebih disebut dengan badai Leonid.

Pada 12 Novembr 1883 terjadi fonomena alam di Amerika yang dimulai jam 10 sampai jam 2 malam. Ratusan ribu meteor bertaburan diangkasa sepanjang malam membuat kagum dan bengong orang pada waktu itu. Badai meteor itu menurut para ahli berasal dari rasi Leo.


Di tahun 1899 dan 1933 terjadi lagi hujan meteor. Dan di tahun 1966 terjadi kembali badai meteor di dahului dengan hdirnya Komet Tempel Tuttel di tahun 1965. Sejak itu para ahli tahu, badai leonid terjadi didahului oleh komet tersebut.


Penampakan "kembali" Leonid di atmosfir Bumi terjadi pada bulan November 1998, tepat setelah delapan bulan Tempel-Tuttle melintasi sumbu perihelion. Pada malam tanggal 16-17 November tahun itu, dunia menyaksikan hujan bola api selama 18 jam. Ketika itu dikabarkan, frekuensinya mencapai ratusan meteor per jam. Setahun kemudian, frekuensi jumlah meteor yang masuk ke atmosfir bumi terhitung menurun di beberapa belahan dunia. Namun pada beberapa lokasi, sekitar Eropa, Afrika, dan Timur Tengah terjadi badai Leonid di mana frekwensinya mencapai satu meteor per menit.
Setelah penampakannya yang pertama dan kedua itu, Leonid muncul kembali tahun 2000 dan 2001. Pada tahun 2001 itu, ratusan Leonid berukuran besar melesat masuk ke atmosfir Bumi. Para pengamat di Observatorium Bosscha ketika itu melaporkan, bahwa mereka telah melihat sekitar 50 meteor Leonid terlihat antara puul 01:48 hingga 02:05 waktu setempat. Setelah itu, sekitar 40 Leonid terlihat setiap 20 menit hingga pukul 02:45. Selama dua setengah jam mengamati dengan mata telanjang, para astronom di Bosscha melihat ada sekitar 200 meteor Leonid tampak muncul dari langit sebelah timur dan menyebar ke segala penjuru arah. Mereka pun sempat melihat sebuah Leonid lewat di atas kepala dalam waktu cukup lama.


Sebagian besar hujan meteor datang dari komet, karena permukaan esnya menguap dengan mudah ketika berdekatan dengan matahari. Debu yang dibebaskan dalam proses ini terbakar di atmosfer Bumi dan menciptakan “bintang jatuh”.
Namun, aliran debu yang terjadi dalam hujan meteor Geminid yang terjadi setiap bulan Desember di Bumi, tidaklah disebabkan oleh komet. Ia disebabkan oleh sebuah benda selebar 5 kilometer bernama 3200 Phaeton, yang tempaknya adalah sebuah asteroid.
Hujan meteor geminid terjadi setiap desember
Tapi asteroid itu batu. Bagaimana batu bisa menyiramkan begitu banyak bahan tanpa adanya es untuk diuapkan? Petunjuk datang bulan Juni 2009 saat pesawat STEREO-A NASA mengamati kembaran sang asteroid dalam kegelapan saat ia pada titik terdekatnya ke Matahari, yang berada hanya 14 persen dari jarak Bumi ke Bintang tersebut.
David Jewitt dan Jing Li, keduanya dari Universitas California di Los Angeles megnatakan kalau sisi asteroid yang menghadap Matahari mencapai suhu 480 hingga 780 °C di titik tersebut. Suhu ini cukup panas sehingga membuat batuannya mengembang dan retak, membangkitkan debu yang memantulkan sinar matahari dan menyebabkan asteroid ini cemerlang.
Efek kedua juga menyumbang pada pengguguran debu Phaeton. Walaupun asteroid ini tampaknya tidak memiliki es, beberapa molekul air dapat terikat secara kimiawi dalam sela-sela bebatuannya. Bila ada mineral bernama serpentinite di sana, misalnya, ia akan pecah pada suhu 630 °C dan melepaskan air yang diikatnya secara kimia dalam bentuk uap.
Proses ini dapat menjadi dahsyat, menurut percobaan tahun 2009 oleh Jay Melosh dari Universitas Purdue di West Lafayette, Indiana, dan rekan-rekannya. “Pecahan serpentinite terlontar dengan kecepatan tinggi, mungkin dikendalikan oleh uap yang meledak dari mineral yang mengalami dehidrasi tersebut,” kata Melosh.
Pecahnya mineral seperti serpentine dapat menyebabkan asteroid tersebut menyemburkan debu, kata beliau.
“Melihat sendiri massa yang hilang dari Phaeton merupakan kemajuan besar,” kata Yan Fernández dari Universitas Florida Tengah di Orlando, yang mempelajari Phaeton. “Akan lebih menggembirakan lagi kalau ada yang bisa menemukan lebih banyak pengetahuan atas peristiwa letupan ini.”

Komet2 penyebab meteor
Penelitian tentang komet dapat memberikan kontribusi penting dalam mempelajari dampak lingkungan antariksa terhadap atmosfer bumi. Salah satu dampak yang ditimbulkan komet yang melintas dekat bumi adalah hujan meteor akibat masuknya debu-debu komet ke atmosfer bumi. Setiap tanggal 7 – 15 Agustus Bumi kita biasa dihujani oleh debu-debu komet Swift-Tuttle yang menyebabkan hujan meteor besar yang dikenal sebagai hujan meteor Perseid. Di samping itu banyak lagi hujan meteor yang berasosiasi dengan komet-komet yang melintas dekat Bumi.
Hujan Meteor
Komet yang mendekat matahari selalu melepaskan gas dan debu yang tampak sebagai ekor komet. Debu-debu komet itu yang tertinggal di sepanjang lintasan orbitnya merupakan gugusan meteoroid yang bisa menyebabkan hujan meteor di bumi bila bumi melintasi lintasan komet tersebut. Dampak hujan meteor terhadap bumi antara lain berupa ionisasi di ionosfer dan penumpukan aerosol di stratosfer.
Menurut penelitian, gugusan meteoroid itu sifatnya berbeda-beda tergantung umurnya. Ada yang masih padat tetapi terkonsentrasi di sekitar inti komet sehingga hanya akan menyebabkan hujan meteor periodik, sesuai dengan waktu kehadiran komet mendekat bumi. Golongan ini diwakili oleh hujan meteor Draconids (pada awal Oktober) tahun 1933, 1946 dan 1985 yang disebabkan oleh komet Giacobini-Zinner.
Golongan ke dua gugusan meteoroid tipis di sepanjang lintasannya, tetapi di dekat kometnya kerapatannya tinggi, misalnya gugusan meteoroid Leonids (penyebab hujan meteor 14-19 November) yang disebabkan oleh komet Tempel-Tuttle. Golongan ke tiga adalah gugusan meteoroid yang tersebar merata di sepanjang lintasannya yang menyebabkan hujan meteor yang hampir seragam intensitasnya setiap tahun, misalnya hujan meteor Geminids (11-16 Desember) yang disebabkan oleh komet yang telah mati, asteroid Phaethon. Makin tua umurnya gugusan meteorid itu makin tipis dan akhirnya tidak menunjukkan lagi gejala hujan meteor.
Beberapa hujan meteor telah diidentifikasikan berkaitan dengan komet yang masih aktif, seperti hujan meteor Eta Aquarids (3-10  Mei) dan Perseids (7-15 Agustus) yang masing-masing disebabkan oleh komet Halley dan Swift-Tuttle. Beberapa lainnya dikaitkan dengan komet yang telah hancur, seperti hujan meteor Andromedids (5-23 November) akibat komet Biela yang telah hancur, atau komet yang telah mati, seperti hujan meteor Geminids yang diakibatkan oleh komet mati yang tinggal intinya berupa asteroid Phaethon. Dan beberapa hujan meteor lainnya belum diketahui komet-komet penyebabnya seperti hujan meteor Quadrantids 2 – 5 Januari.
Orbit Komet
Untuk mengetahui komet-komet penyebab hujan meteor maka orbit (lintasan) komet-komet periodik dianalisis dan dicari yang mempunyai kemungkinan menyebabkan hujan meteor di bumi. Ini kemudian dibandingkan dengan hujan meteor yang terdeteksi oleh Meteor Wind Radar (MWR) di Serpong (dioperasikan secara kerjasama antara LAPAN, BPPT, dan Universitas Kyoto). Pendekatan yang dilakukan agak berbeda dari yang biasa dilakukan para peneliti sebelumnya yang mengkaji elemen orbit meteoroid dan membandingkannya dengan elemen orbit komet. Cara seperti itu rumit dan memerlukan data pengamatan hujan meteor secara visual, fotografi, atau pemantauan TV untuk menentukan arah datangnya meteor. Cara itu tidak mungkin dilakukan bila hanya menggunakan data MWR.
Dengan pendekatan itu dapat didentifikasikan kembali hujan meteor utama yang memang telah diketahui komet penyebabnya. Maka dengan pendekatan serupa itu pula hujan-hujan meteor lainnya yang terdeteksi MWR di Serpong diidentifikasi dan dikaitkan dengan komet yang mungkin menyebabkannya.
Karakteristik orbit benda-benda langit mengitari matahari dinyatakan oleh elemen-elemen orbitnya yang menyatakan secara spesifik bentuk kelonjongan orbit, posisi terdekat dan terjauh terhadap matahari, kemiringan bidang orbitnya terhadap bidang ekliptika (bidang orbit bumi), dan posisi titik perpotongan orbitnya pada bidang ekliptika. Dengan menganalisis elemen-elemen orbit komet dapat ditentukan komet-komet apa saja lintasannya dekat dengan orbit bumi. Demikian juga dapat ditentukan kapan akan terjadi hujan meteor bila bumi melintasi orbit komet tersebut. Dari analisis itu diketahui bahwa antara 1 Januari dan 1 April bumi paling sedikit bertemu dengan lintasan komet, sedangkan antara 1 Oktober – 1 Desember terbanyak.
Dari 153 komet periodik yang saya pelajari, diketahui bahwa 33 komet mempunyai orbit yang melintas dekat orbit bumi. Kemudian dengan menganalisis jarak terdekat ke-33 orbit komet itu, disimpulkan bahwa secara teoritik komet yang menyebabkan atau berpotensi menyebabkan hujan meteor sebanyak 21 komet dengan kemungkinan menyebabkan 30 kali hujan meteor setiap tahun.
Penyebab Hujan Meteor
Menurut pengamatan radar meteor di Serpong diketahui bahwa jumlah meteor yang memasuki bumi secara umum naik turun secara periodik (sinusoidal). Pola umum itu diduga kuat disebabkan oleh meteor sporadik akibat masuknya debu-debu antarplanet (meteoroid) yang bervariasi akibat perubahan lintang bumi pada kedudukan “haluan” sepanjang orbit bumi. “Haluan” bumi dalam hal ini adalah titik terdepan pada bola bumi selama beredar di orbitnya yang terletak pada bidang ekliptika. Perubahan lintang “haluan” bumi disebabkan oleh kemiringan equator 23,5o terhadap ekliptika.
Di samping pola umum itu di dapati juga ada kenaikan jumlah meteor secara mendadak pada waktu-waktu tertentu. Kenaikan mendadak itu disebabkan oleh hujan meteor, terutama akibat masuknya debu-debu komet ke atmosfer Bumi. Setidaknya dijumpai adanya 25 kali hujan meteor dalam satu tahun, sebagian diantaranya “baru” (belum/tidak terkenal). Dari identifikasi hujan meteor tersebut, 18 titik lintasan komet yang menyebabkan 19 kali hujan meteor. Sekali hujan meteor mungkin disebabkan oleh lebih dari satu lintasan komet yang berdekatan. Demikian juga sebuah komet mungkin menyebabkan dua kali hujan meteor.
Hujan meteor utama yang telah lama diketahui komet penyebabnya juga terlihat jelas pada pada data MWR: Hujan meteor Eta Aquarids (oleh komet Halley) tampak pada tanggal 2 – 9 Mei. Hujan meteor Perseids (oleh komet Swift-Tuttle) tampak pada tanggal 7 – 15 Agustus. Hujan Meteor Taurids (komet Encke) tampak pada tanggal 3 – 9 November.
Pada tanggal 6 Mei bumi melintasi orbit komet Halley yang lintasannya berada pada jarak 10,5 juta km di “bawah” (selatan) bidang ekliptika (bidang orbit bumi). Karena sebaran debu-debu komet itu melebar, bumi akan merasakan hujan meteor sebelum tanggal 6 Mei dan beberapa hari sesudahnya. Hujan meteor Eta Aquarids memang biasa terjadi pada tanggal 3 – 10 Mei dengan puncaknya pada tanggal 4 – 5 Mei. Dan data MWR menunjukkan bahwa hujan meteor itu terjadi antara tanggal 2 – 9 Mei dengan puncaknya pada tanggal 4 mei.
Data pengamatan hujan meteor menunjukkan adanya beberapa puncak pada hujan meteor Eta Aquarids ini dan juga Orionids. Variasi jumlah meteor itu menunjukkan bahwa distribusi debu-debu komet Halley itu tidak merata.
Lintasan komet Swift-Tuttle (yang diduga akan menabrak bumi pada tahun 2026) merupakan yang terdekat dengan bumi dan nyaris tepat memotong orbit bumi. Lintasannya berada di belahan utara (“atas”) orbit bumi pada jarak sekitar 2 juta km. Bumi memotong lintasan komet Swift-Tuttle pada tanggal 13 Agustus. Ini akan menyebabkan bumi mengalami hujan meteor sekitar tanggal 13 Agustus. Memang, hujan meteor Perseids biasanya terjadi antara tanggal 7 – 15 Agustus dengan puncaknya pada tanggal 12 – 13 Agustus. Data MWR menunjukkan adanya hujan meteor pada tanggal 7 – 15 Agustus dengan dua puncak utama, tanggal 10 dan 15 Agustus. Menurut Lindblad & Porubcan (1994) adanya dua puncak hujan meteor Perseid bisa disebabkan karena orbit gugus meteoroid lama bergeser dari orbit gugus meteoroid baru.
Pada tanggal 1 November bumi melintasi orbit komet Encke yang berada pada ketinggian 29 juta km di “atas” orbit bumi. Ini menyebabkan hujan meteor yang dihasilkannya terutama terjadi sesudah tanggal 1 November ketika bumi melintas di dekat gugusan meteoroidnya. Hujan meteor yang terdeteksi oleh MWR terjadi pada tanggal 3 – 9 November. Biasanya hujan meteor Taurids memang teramati antara tanggal 23 Oktober dan 20 November dengan puncaknya pada tanggal 4 – 7 November.
Hal yang menarik, komet Hartley juga mempunyai kemungkinan besar memberikan kontribusi hujan meteor 3 – 9 November itu. Jarak lintasannya ke orbit bumi lebih dekat (5,5 juta km) dari pada lintasan komet Encke (28 juta km). Melihat jarak terdekatnya terjadi pada tanggal 5 November, komet ini menyebabkan hujan meteor terutama sesudah tanggal 5 November. Jadi, hujan meteor 3 – 9 November yang terdeteksi MWR disebabkan oleh dua komet: Encke dan Hartley.


Kenapa hujan meteor bisa terjadi dan apakah penyebab hujan meteor itu? Hujan meteor adalah fenomena astronomi yang terjadi ketika sejumlah meteor terlihat bersinar pada langit malam.

Meteor ini terjadi karena adanya serpihan benda luar angkasa yang dinamakan meteoroid, yang memasuki atmosfer Bumi dengan kecepatan tinggi. Ukuran meteor umumnya hanya sebesar sebutir pasir, dan hampir semuanya hancur sebelum mencapai permukaan Bumi. Serpihan yang mencapai permukaan Bumi disebut meteorit. Hujan meteor umumnya terjadi ketika Bumi melintasi dekat orbit sebuah komet dan melalui serpihannya.

Kamis malam lalu, 15 April 2010, hingga 26 April 2010 nanti hujan meteor Lyrids akan menghiasi langit malam. Fenomena tahunan itu bisa disaksikan di seluruh Indonesia selepas tengah malam. Puncak hujan meteor ini akan terjadi pada 21-22 April. Saat itu, diperkirakan ada 10-20 meteor yang muncul setiap jam. Woww..!

meteor Lyridshujan meteor

Tahun lalu hujan meteor juga terjadi pada November 2009. Meteornya adalah meteor Leonid. Tempat pengamatan terbaik ada di Asia, tapi pengamat di Amerika Utara juga dapat menikmati pemandangan menakjubkan hujan meteor Leonid, jika cuaca memungkinkan.

"Saat itu diperkirakan 20-30 meteor per jam di Amerika, dan sebanyak 200-300 meteor per jam di penjuru Asia," ujar Bill Cooke dari kantor Meteoroid environment NASA. Astronom lain yang bekerja di bidang yang baru lahir ini memprediksi hujan meteor telah diperkirakan.

Hujan Leonid merupakan acara tahunan, jika langit terlihat jelas dan cahaya bulan tidak mengganggu. Tahun ini, bulan sudah dekat fase baru, dan bukan faktor yang mengganggu. Bagi siapa pun di belahan bumi utara dengan langit gelap, jauh dari perkotaan dan pinggiran pencahayaan, acara ini jangan sampai dilewatkan dengan begadang sepanjang malam.

"Biasanya pada saat-saat tertentu terjadi lonjakan meteor, tapi tahun ini normal," katanya, Kamis (15/4/2010). Fenomena hujan meteor ini berlangsung sejak lama. Meteor dari komet Tatcher , misalnya, mulai diketahui astronom sejak 2600 tahun lalu.


Hujan Meteor dan Dampaknya bagi Bumi

Hakim L. Malasan, Direktur Observatorium Bosscha, Lembang, Kabupaten Bandung Barat baru-baru ini mengungkapkan, terdapat sedikitnya 20 ton partikel meteor yang mengotori eksosfer setiap peristiwa hujan meteor. Sejumlah partikel ini terus bertambah seiring dengan terjadinya hujan meteor setiap tahun.
“Bumi sudah biasa mengalami hujan meteor sejak jutaan tahun yang lalu. Sisa hujan meteor terus bertumpuk di atas eksosfer dan tidak hilang dengan sendirinya. Bisa dibayangkan, seberapa besar tingkat pengotoran atmosfer bumi akibat hujan meteor,” tuturnya.
Meski demikian, kata Hakim, pengotoran atmosfer oleh peristiwa alam seperti hujan meteor dan radiasi matahari tidak jauh lebih besar dibandingkan dengan pengotoran oleh perilaku manusia di bumi. Saat ini, suhu di bumi meningkat 2 derajat Celsius akibat melonjaknya sejumlah gas pemicu pemanasan global seperti karbondioksida (C02), dinitroksida (N2O), metana (CH4), dan sulfurheksafluorida (SF6).
Sejumlah gas tersebut di antaranya dihasilkan dari sisa pembakaran di berbagai industri, kebakaran hutan, dan sampah. Jika dibiarkan, atmosfer bumi akan mengalami kerusakan akibat menipisnya lapisan ozon. Kehidupan di bumi pun akan semakin terancam karena melemahnya sistem pertahanan di bumi.


HUJAN METEOR
THE REAL ARMAGEDDON
leonids
Baru-baru ini kita dikejutkan oleh kabar yang cukup fenomenal. Hujan meteor, itulah kabar yang tersebar hampir diseluruh dunia khususnya kawasan Asia. Betapa tidak ? Badan raung ankas amerika (NASA) baru-baru ini disibukkan oleh agendanya untuk mengamati hujan meteor tersebut. Meteor yang menghujan tersebut adalah meteor jenis Leonid, yang mempunyai periode maksimal 93 tahun, terakhir terjadi pada tahun1966 dimana tak kurang dari 150.000 meteor / jam terlihat. Berikutnya pada tahun 1999 ( pada tahun sekarang (1998-red) ini sudah mulai memuncak). Tentunya kita ingin mengetahui juga kejadiannya, ternyata tidak hanya hujan air atau hujan es saja yang ada, ternyata hujan meteor pun tak urung kejadian alam yang menarik untuk disimak. Keberadaan meteorid (cikal bakal meteor-red), seagian berkaitan erat dengan asteroid / komet. Saat kedua benda langit ini mendekati matahari ada lintasannya yang tumpang tindih dengan lintasan edar bumi. Yang jadi masalah, asteroid atau komet kalau mendekati matahari akan mengalami penguapan dan sublimasi. Walhasil disepanjang lintas edarnya penuh dengan materi hasil kedua proses tersebut. Bila bumi masuk daerah jejak ini, maka sebagian akan masuk atmosfer dan menghasilkan fenomena hujan meteor (meteor shower). Perlu kita ketahui , menurut sejumlah saksi mata yang pernah melihat terjadinya hujan meteor tersebut, kejatuhan meteor itu tampak indah sekali seperti kembang api dengan warna yang semarak. Di perkirakan sejumlah warga di Jepang, Amerika Serikat dan Thailand bisa menyaksikan keindahan hujan meteor yang biasanya terjadi 33 tahun sekali itu. Diperkirakan sekitar 2000-5000 meteor leonid per jam, Spektakuler bukan ? Sebenarnya tak kurang dari 20 juta meteorit masuk ke atmosfer bumi per hari. Yang berukuran besar ada kemungkinan habis terbakar, sehingga sempat mampir di bumi. Sisa meteor ini disebut meteorit. Saat ini meteorit terbesar ada di Hoba-afrika (1920, 60 ton), bayangkan bila ada batu sebesar itu jatuh dengan kecepatan rata-rata 50 km/detik. andromedaMungkin yang sudah melihat film Deep Impact dan Armageddom bisa membayangkan dampaknya. Dibalik segala keindahan yang terjadi yang diakibatkan hujan meteor tersebut terjadi dampak negatif bagi seluruh satelit yang ada di angkasa. Badan Antariksa Nasional Amerika (NASA) menyebutkan, selain dampak mekanis akibat tabrakan meteor, hal lain yang perlu diwaspadai adalah radiasi gelombang elektro magnetiknya, yang bisa mempengaruhi sistem di satelit. Beberapa kawasan yang diduga bakal terkena dampak paling parah adalah:inklinasi rendah, bumi untuk satelit. Sebenarnya warga Indonesia dapat juga menyaksikan peristiwa alam yang langka tersebut. Namun dikarenakan cuaca yang tidak bersahabat (musim hujan-red) warga Indonesia tidak dapat keindahan hujan meteor tersebut. Hujan meteor yang puncajnya diperkirakan terjadi pada pukul 02-20.00 wib itu sulit diamati baik olh tim Observatorium Bosscha dan jurusan Astronomi ITB di Bandung, serta astronom Dr. Maldji Raharjo beserta staf pusdai Jabar di pelabuhan ratu. Terlepas dari itu, itulah kekuasan sang pencipta. Pada akhirnya kita benar-benar merasakan bahwa manusia itu kecil dimata Allah. Allhu Akbar…. (ogi/ei/jun-kompas)


Meteor Draconids

NASA mengatakan badai yang melewati orbit bumi di sekitar matahari setiap Oktober datang dari hujan meteor yang disebut Draconids.
Nama Draconids diambil karena meteor-meteor tersebut mengalir dari arah konstilasi bintang Draco.
Inilah komet 21P/Giacobini–Zinner, yang menghasilkan hujan meteor Giacobinids atau lebih dikenal juga dengan "hujan meteor Draconids" karena "terlihat" seperti jatuh dari konstilasi rasi bintang "Draconids"
Hujan tersebut juga diberi nama Giacobinids karena mengambil nama dari komet yang melempar mereka, komet Giacobini-Zinner.
Intensitas badai biasanya rendah tiap tahun, tetapi bisa meningkat secara drastis setiap 13 tahun ketika bumi melewati wilayah terpadat dalam aliran tersebut.
Intensitas tertinggi terjadi pada 1933 ketika badai mengeluarkan 54 ribu meteor per jam. Sementara, pada 1946, tercatat 10 ribu meteor.
Jumlah meteor terbanyak dalam badai tersebut pada 1998 mencapai ratusan setiap jam.
Dr William Cooke dari Meteoroid Environment Office NASA di Alabama mengatakan pihaknya sudah menyiapkan langkah antisipatif untuk menghindari masalah akibat badai tersebut.
Menurut prediksi dari program komputer COoke menyimpulkan ratusan meteor per jam bisa terlihat dari bumi pada 8 Oktober 2011.
“Sebelumnya, kami tidak mengetahui apa yang terjadi. Kini kami bisa merasa lebih lega,” ujar Cooke. “Kami sudah bekerja sama dengan program-program NASA (lainnya) untuk mengatasi risiko terhadap pesawat luar angkasa.”



Asal usul

Banyak hipotesis tentang asal usul Tata Surya telah dikemukakan para ahli, di antaranya :
Pierre-Simon Laplace, pendukung Hipotesis Nebula
Gerard Kuiper, pendukung Hipotesis Kondensasi
Hipotesis Nebula
Hipotesis nebula pertama kali dikemukakan oleh Emanuel Swedenborg (1688-1772)[1] tahun 1734 dan disempurnakan oleh Immanuel Kant (1724-1804) pada tahun 1775. Hipotesis serupa juga dikembangkan oleh Pierre Marquis de Laplace[2] secara independen pada tahun 1796. Hipotesis ini, yang lebih dikenal dengan Hipotesis Nebula Kant-Laplace, menyebutkan bahwa pada tahap awal, Tata Surya masih berupa kabut raksasa. Kabut ini terbentuk dari debu, es, dan gas yang disebut nebula, dan unsur gas yang sebagian besar hidrogen. Gaya gravitasi yang dimilikinya menyebabkan kabut itu menyusut dan berputar dengan arah tertentu, suhu kabut memanas, dan akhirnya menjadi bintang raksasa (matahari). Matahari raksasa terus menyusut dan berputar semakin cepat, dan cincin-cincin gas dan es terlontar ke sekeliling matahari. Akibat gaya gravitasi, gas-gas tersebut memadat seiring dengan penurunan suhunya dan membentuk planet dalam dan planet luar. Laplace berpendapat bahwa orbit berbentuk hampir melingkar dari planet-planet merupakan konsekuensi dari pembentukan mereka.[3]
Hipotesis Planetisimal
Hipotesis planetisimal pertama kali dikemukakan oleh Thomas C. Chamberlin dan Forest R. Moulton pada tahun 1900. Hipotesis planetisimal mengatakan bahwa Tata Surya kita terbentuk akibat adanya bintang lain yang lewat cukup dekat dengan matahari, pada masa awal pembentukan matahari. Kedekatan tersebut menyebabkan terjadinya tonjolan pada permukaan matahari, dan bersama proses internal matahari, menarik materi berulang kali dari matahari. Efek gravitasi bintang mengakibatkan terbentuknya dua lengan spiral yang memanjang dari matahari. Sementara sebagian besar materi tertarik kembali, sebagian lain akan tetap di orbit, mendingin dan memadat, dan menjadi benda-benda berukuran kecil yang mereka sebut planetisimal dan beberapa yang besar sebagai protoplanet. Objek-objek tersebut bertabrakan dari waktu ke waktu dan membentuk planet dan bulan, sementara sisa-sisa materi lainnya menjadi komet dan asteroid.
Hipotesis Pasang Surut Bintang
Hipotesis pasang surut bintang pertama kali dikemukakan oleh James Jeans pada tahun 1917. Planet dianggap terbentuk karena mendekatnya bintang lain kepada matahari. Keadaan yang hampir bertabrakan menyebabkan tertariknya sejumlah besar materi dari matahari dan bintang lain tersebut oleh gaya pasang surut bersama mereka, yang kemudian terkondensasi menjadi planet.[3] Namun astronom Harold Jeffreys tahun 1929 membantah bahwa tabrakan yang sedemikian itu hampir tidak mungkin terjadi.[3] Demikian pula astronom Henry Norris Russell mengemukakan keberatannya atas hipotesis tersebut.[4]
Hipotesis Kondensasi
Hipotesis kondensasi mulanya dikemukakan oleh astronom Belanda yang bernama G.P. Kuiper (1905-1973) pada tahun 1950. Hipotesis kondensasi menjelaskan bahwa Tata Surya terbentuk dari bola kabut raksasa yang berputar membentuk cakram raksasa.
Hipotesis Bintang Kembar
Hipotesis bintang kembar awalnya dikemukakan oleh Fred Hoyle (1915-2001) pada tahun 1956. Hipotesis mengemukakan bahwa dahulunya Tata Surya kita berupa dua bintang yang hampir sama ukurannya dan berdekatan yang salah satunya meledak meninggalkan serpihan-serpihan kecil. Serpihan itu terperangkap oleh gravitasi bintang yang tidak meledak dan mulai mengelilinginya.

[sunting] Sejarah penemuan

Lima planet terdekat ke Matahari selain Bumi (Merkurius, Venus, Mars, Yupiter dan Saturnus) telah dikenal sejak zaman dahulu karena mereka semua bisa dilihat dengan mata telanjang. Banyak bangsa di dunia ini memiliki nama sendiri untuk masing-masing planet.
Perkembangan ilmu pengetahuan dan teknologi pengamatan pada lima abad lalu membawa manusia untuk memahami benda-benda langit terbebas dari selubung mitologi. Galileo Galilei (1564-1642) dengan teleskop refraktornya mampu menjadikan mata manusia "lebih tajam" dalam mengamati benda langit yang tidak bisa diamati melalui mata telanjang.
Karena teleskop Galileo bisa mengamati lebih tajam, ia bisa melihat berbagai perubahan bentuk penampakan Venus, seperti Venus Sabit atau Venus Purnama sebagai akibat perubahan posisi Venus terhadap Matahari. Penalaran Venus mengitari Matahari makin memperkuat teori heliosentris, yaitu bahwa matahari adalah pusat alam semesta, bukan Bumi, yang sebelumnya digagas oleh Nicolaus Copernicus (1473-1543). Susunan heliosentris adalah Matahari dikelilingi oleh Merkurius hingga Saturnus.
Model heliosentris dalam manuskrip Copernicus.
Teleskop Galileo terus disempurnakan oleh ilmuwan lain seperti Christian Huygens (1629-1695) yang menemukan Titan, satelit Saturnus, yang berada hampir 2 kali jarak orbit Bumi-Yupiter.
Perkembangan teleskop juga diimbangi pula dengan perkembangan perhitungan gerak benda-benda langit dan hubungan satu dengan yang lain melalui Johannes Kepler (1571-1630) dengan Hukum Kepler. Dan puncaknya, Sir Isaac Newton (1642-1727) dengan hukum gravitasi. Dengan dua teori perhitungan inilah yang memungkinkan pencarian dan perhitungan benda-benda langit selanjutnya
Pada 1781, William Herschel (1738-1822) menemukan Uranus. Perhitungan cermat orbit Uranus menyimpulkan bahwa planet ini ada yang mengganggu. Neptunus ditemukan pada Agustus 1846. Penemuan Neptunus ternyata tidak cukup menjelaskan gangguan orbit Uranus. Pluto kemudian ditemukan pada 1930.
Pada saat Pluto ditemukan, ia hanya diketahui sebagai satu-satunya objek angkasa yang berada setelah Neptunus. Kemudian pada 1978, Charon, satelit yang mengelilingi Pluto ditemukan, sebelumnya sempat dikira sebagai planet yang sebenarnya karena ukurannya tidak berbeda jauh dengan Pluto.
Para astronom kemudian menemukan sekitar 1.000 objek kecil lainnya yang letaknya melampaui Neptunus (disebut objek trans-Neptunus), yang juga mengelilingi Matahari. Di sana mungkin ada sekitar 100.000 objek serupa yang dikenal sebagai Objek Sabuk Kuiper (Sabuk Kuiper adalah bagian dari objek-objek trans-Neptunus). Belasan benda langit termasuk dalam Objek Sabuk Kuiper di antaranya Quaoar (1.250 km pada Juni 2002), Huya (750 km pada Maret 2000), Sedna (1.800 km pada Maret 2004), Orcus, Vesta, Pallas, Hygiea, Varuna, dan 2003 EL61 (1.500 km pada Mei 2004).
Penemuan 2003 EL61 cukup menghebohkan karena Objek Sabuk Kuiper ini diketahui juga memiliki satelit pada Januari 2005 meskipun berukuran lebih kecil dari Pluto. Dan puncaknya adalah penemuan UB 313 (2.700 km pada Oktober 2003) yang diberi nama oleh penemunya Xena. Selain lebih besar dari Pluto, objek ini juga memiliki satelit.

[sunting] Struktur

Perbanding relatif massa planet. Yupiter adalah 71% dari total dan Saturnus 21%. Merkurius dan Mars, yang total bersama hanya kurang dari 0.1% tidak nampak dalam diagram di atas.
Orbit-orbit Tata Surya dengan skala yang sesungguhnya
Illustrasi skala
Komponen utama sistem Tata Surya adalah matahari, sebuah bintang deret utama kelas G2 yang mengandung 99,86 persen massa dari sistem dan mendominasi seluruh dengan gaya gravitasinya.[5] Yupiter dan Saturnus, dua komponen terbesar yang mengedari matahari, mencakup kira-kira 90 persen massa selebihnya.[c]
Hampir semua objek-objek besar yang mengorbit matahari terletak pada bidang edaran bumi, yang umumnya dinamai ekliptika. Semua planet terletak sangat dekat pada ekliptika, sementara komet dan objek-objek sabuk Kuiper biasanya memiliki beda sudut yang sangat besar dibandingkan ekliptika.
Planet-planet dan objek-objek Tata Surya juga mengorbit mengelilingi matahari berlawanan dengan arah jarum jam jika dilihat dari atas kutub utara matahari, terkecuali Komet Halley.
Hukum Gerakan Planet Kepler menjabarkan bahwa orbit dari objek-objek Tata Surya sekeliling matahari bergerak mengikuti bentuk elips dengan matahari sebagai salah satu titik fokusnya. Objek yang berjarak lebih dekat dari matahari (sumbu semi-mayor-nya lebih kecil) memiliki tahun waktu yang lebih pendek. Pada orbit elips, jarak antara objek dengan matahari bervariasi sepanjang tahun. Jarak terdekat antara objek dengan matahari dinamai perihelion, sedangkan jarak terjauh dari matahari dinamai aphelion. Semua objek Tata Surya bergerak tercepat di titik perihelion dan terlambat di titik aphelion. Orbit planet-planet bisa dibilang hampir berbentuk lingkaran, sedangkan komet, asteroid dan objek sabuk Kuiper kebanyakan orbitnya berbentuk elips.
Untuk mempermudah representasi, kebanyakan diagram Tata Surya menunjukan jarak antara orbit yang sama antara satu dengan lainnya. Pada kenyataannya, dengan beberapa perkecualian, semakin jauh letak sebuah planet atau sabuk dari matahari, semakin besar jarak antara objek itu dengan jalur edaran orbit sebelumnya. Sebagai contoh, Venus terletak sekitar sekitar 0,33 satuan astronomi (SA) lebih dari Merkurius[d], sedangkan Saturnus adalah 4,3 SA dari Yupiter, dan Neptunus terletak 10,5 SA dari Uranus. Beberapa upaya telah dicoba untuk menentukan korelasi jarak antar orbit ini (hukum Titus-Bode), tetapi sejauh ini tidak satu teori pun telah diterima.
Hampir semua planet-planet di Tata Surya juga memiliki sistem sekunder. Kebanyakan adalah benda pengorbit alami yang disebut satelit. Beberapa benda ini memiliki ukuran lebih besar dari planet. Hampir semua satelit alami yang paling besar terletak di orbit sinkron, dengan satu sisi satelit berpaling ke arah planet induknya secara permanen. Empat planet terbesar juga memliki cincin yang berisi partikel-partikel kecil yang mengorbit secara serempak.

[sunting] Terminologi

Secara informal, Tata Surya dapat dibagi menjadi tiga daerah. Tata Surya bagian dalam mencakup empat planet kebumian dan sabuk asteroid utama. Pada daerah yang lebih jauh, Tata Surya bagian luar, terdapat empat gas planet raksasa.[6] Sejak ditemukannya Sabuk Kuiper, bagian terluar Tata Surya dianggap wilayah berbeda tersendiri yang meliputi semua objek melampaui Neptunus.[7]
Secara dinamis dan fisik, objek yang mengorbit matahari dapat diklasifikasikan dalam tiga golongan: planet, planet kerdil, dan benda kecil Tata Surya. Planet adalah sebuah badan yang mengedari matahari dan mempunyai massa cukup besar untuk membentuk bulatan diri dan telah membersihkan orbitnya dengan menginkorporasikan semua objek-objek kecil di sekitarnya. Dengan definisi ini, Tata Surya memiliki delapan planet: Merkurius, Venus, Bumi, Mars, Yupiter, Saturnus, dan Neptunus. Pluto telah dilepaskan status planetnya karena tidak dapat membersihkan orbitnya dari objek-objek Sabuk Kuiper.[8]
Planet kerdil adalah benda angkasa bukan satelit yang mengelilingi matahari, mempunyai massa yang cukup untuk bisa membentuk bulatan diri tetapi belum dapat membersihkan daerah sekitarnya.[8] Menurut definisi ini, Tata Surya memiliki lima buah planet kerdil: Ceres, Pluto, Haumea, Makemake, dan Eris.[9] Objek lain yang mungkin akan diklasifikasikan sebagai planet kerdil adalah: Sedna, Orcus, dan Quaoar. Planet kerdil yang memiliki orbit di daerah trans-Neptunus biasanya disebut "plutoid".[10] Sisa objek-objek lain berikutnya yang mengitari matahari adalah benda kecil Tata Surya.[8]
Ilmuwan ahli planet menggunakan istilah gas, es, dan batu untuk mendeskripsi kelas zat yang terdapat di dalam Tata Surya. Batu digunakan untuk menamai bahan bertitik lebur tinggi (lebih besar dari 500 K), sebagai contoh silikat. Bahan batuan ini sangat umum terdapat di Tata Surya bagian dalam, merupakan komponen pembentuk utama hampir semua planet kebumian dan asteroid. Gas adalah bahan-bahan bertitik lebur rendah seperti atom hidrogen, helium, dan gas mulia, bahan-bahan ini mendominasi wilayah tengah Tata Surya, yang didominasi oleh Yupiter dan Saturnus. Sedangkan es, seperti air, metana, amonia dan karbon dioksida,[11] memiliki titik lebur sekitar ratusan derajat kelvin. Bahan ini merupakan komponen utama dari sebagian besar satelit planet raksasa. Ia juga merupakan komponen utama Uranus dan Neptunus (yang sering disebut "es raksasa"), serta berbagai benda kecil yang terletak di dekat orbit Neptunus.[12]
Istilah volatiles mencakup semua bahan bertitik didih rendah (kurang dari ratusan kelvin), yang termasuk gas dan es; tergantung pada suhunya, 'volatiles' dapat ditemukan sebagai es, cairan, atau gas di berbagai bagian Tata Surya.

[sunting] Zona planet

Zona Tata Surya yang meliputi, planet bagian dalam, sabuk asteroid, planet bagian luar, dan sabuk Kuiper. (Gambar tidak sesuai skala)
Di zona planet dalam, Matahari adalah pusat Tata Surya dan letaknya paling dekat dengan planet Merkurius (jarak dari matahari 57,9 × 106 km, atau 0,39 SA), Venus (108,2 × 106 km, 0,72 SA), Bumi (149,6 × 106 km, 1 SA) dan Mars (227,9 × 106 km, 1,52 SA). Ukuran diameternya antara 4.878 km dan 12.756 km, dengan massa jenis antara 3,95 g/cm3 dan 5,52 g/cm3.
Antara Mars dan Yupiter terdapat daerah yang disebut sabuk asteroid, kumpulan batuan metal dan mineral. Kebanyakan asteroid-asteroid ini hanya berdiameter beberapa kilometer (lihat: Daftar asteroid), dan beberapa memiliki diameter 100 km atau lebih. Ceres, bagian dari kumpulan asteroid ini, berukuran sekitar 960 km dan dikategorikan sebagai planet kerdil. Orbit asteroid-asteroid ini sangat eliptis, bahkan beberapa menyimpangi Merkurius (Icarus) dan Uranus (Chiron).
Pada zona planet luar, terdapat planet gas raksasa Yupiter (778,3 × 106 km, 5,2 SA), Uranus (2,875 × 109 km, 19,2 SA) dan Neptunus (4,504 × 109 km, 30,1 SA) dengan massa jenis antara 0,7 g/cm3 dan 1,66 g/cm3.
Jarak rata-rata antara planet-planet dengan matahari bisa diperkirakan dengan menggunakan baris matematis Titus-Bode. Regularitas jarak antara jalur edaran orbit-orbit ini kemungkinan merupakan efek resonansi sisa dari awal terbentuknya Tata Surya. Anehnya, planet Neptunus tidak muncul di baris matematis Titus-Bode, yang membuat para pengamat berspekulasi bahwa Neptunus merupakan hasil tabrakan kosmis.

[sunting] Matahari

!Artikel utama untuk bagian ini adalah: Matahari
Matahari dilihat dari spektrum sinar-X
Matahari adalah bintang induk Tata Surya dan merupakan komponen utama sistem Tata Surya ini. Bintang ini berukuran 332.830 massa bumi. Massa yang besar ini menyebabkan kepadatan inti yang cukup besar untuk bisa mendukung kesinambungan fusi nuklir dan menyemburkan sejumlah energi yang dahsyat. Kebanyakan energi ini dipancarkan ke luar angkasa dalam bentuk radiasi eletromagnetik, termasuk spektrum optik.
Matahari dikategorikan ke dalam bintang kerdil kuning (tipe G V) yang berukuran tengahan, tetapi nama ini bisa menyebabkan kesalahpahaman, karena dibandingkan dengan bintang-bintang yang ada di dalam galaksi Bima Sakti, matahari termasuk cukup besar dan cemerlang. Bintang diklasifikasikan dengan diagram Hertzsprung-Russell, yaitu sebuah grafik yang menggambarkan hubungan nilai luminositas sebuah bintang terhadap suhu permukaannya. Secara umum, bintang yang lebih panas akan lebih cemerlang. Bintang-bintang yang mengikuti pola ini dikatakan terletak pada deret utama, dan matahari letaknya persis di tengah deret ini. Akan tetapi, bintang-bintang yang lebih cemerlang dan lebih panas dari matahari adalah langka, sedangkan bintang-bintang yang lebih redup dan dingin adalah umum.[13]
Dipercayai bahwa posisi matahari pada deret utama secara umum merupakan "puncak hidup" dari sebuah bintang, karena belum habisnya hidrogen yang tersimpan untuk fusi nuklir. Saat ini Matahari tumbuh semakin cemerlang. Pada awal kehidupannya, tingkat kecemerlangannya adalah sekitar 70 persen dari kecermelangan sekarang.[14]
Matahari secara metalisitas dikategorikan sebagai bintang "populasi I". Bintang kategori ini terbentuk lebih akhir pada tingkat evolusi alam semesta, sehingga mengandung lebih banyak unsur yang lebih berat daripada hidrogen dan helium ("metal" dalam sebutan astronomi) dibandingkan dengan bintang "populasi II".[15] Unsur-unsur yang lebih berat daripada hidrogen dan helium terbentuk di dalam inti bintang purba yang kemudian meledak. Bintang-bintang generasi pertama punah terlebih dahulu sebelum alam semesta dapat dipenuhi oleh unsur-unsur yang lebih berat ini.
Bintang-bintang tertua mengandung sangat sedikit metal, sedangkan bintang baru mempunyai kandungan metal yang lebih tinggi. Tingkat metalitas yang tinggi ini diperkirakan mempunyai pengaruh penting pada pembentukan sistem Tata Surya, karena terbentuknya planet adalah hasil penggumpalan metal.[16]

[sunting] Medium antarplanet

Lembar aliran heliosfer, karena gerak rotasi magnetis matahari terhadap medium antarplanet.
Di samping cahaya, matahari juga secara berkesinambungan memancarkan semburan partikel bermuatan (plasma) yang dikenal sebagai angin matahari. Semburan partikel ini menyebar keluar kira-kira pada kecepatan 1,5 juta kilometer per jam,[17] menciptakan atmosfer tipis (heliosfer) yang merambah Tata Surya paling tidak sejauh 100 SA (lihat juga heliopause). Kesemuanya ini disebut medium antarplanet.
Badai geomagnetis pada permukaan matahari, seperti semburan matahari (solar flares) dan lontaran massa korona (coronal mass ejection) menyebabkan gangguan pada heliosfer, menciptakan cuaca ruang angkasa.[18] Struktur terbesar dari heliosfer dinamai lembar aliran heliosfer (heliospheric current sheet), sebuah spiral yang terjadi karena gerak rotasi magnetis matahari terhadap medium antarplanet.[19][20] Medan magnet bumi mencegah atmosfer bumi berinteraksi dengan angin matahari. Venus dan Mars yang tidak memiliki medan magnet, atmosfernya habis terkikis ke luar angkasa.[21] Interaksi antara angin matahari dan medan magnet bumi menyebabkan terjadinya aurora, yang dapat dilihat dekat kutub magnetik bumi.
Heliosfer juga berperan melindungi Tata Surya dari sinar kosmik yang berasal dari luar Tata Surya. Medan magnet planet-planet menambah peran perlindungan selanjutnya. Densitas sinar kosmik pada medium antarbintang dan kekuatan medan magnet matahari mengalami perubahan pada skala waktu yang sangat panjang, sehingga derajat radiasi kosmis di dalam Tata Surya sendiri adalah bervariasi, meski tidak diketahui seberapa besar.[22]
Medium antarplanet juga merupakan tempat beradanya paling tidak dua daerah mirip piringan yang berisi debu kosmis. Yang pertama, awan debu zodiak, terletak di Tata Surya bagian dalam dan merupakan penyebab cahaya zodiak. Ini kemungkinan terbentuk dari tabrakan dalam sabuk asteroid yang disebabkan oleh interaksi dengan planet-planet.[23] Daerah kedua membentang antara 10 SA sampai sekitar 40 SA, dan mungkin disebabkan oleh tabrakan yang mirip tetapi tejadi di dalam Sabuk Kuiper

Jumat, 06 Januari 2012

Kosmologi


Kosmologi adalah ilmu yang mempelajari struktur dan sejarah alam semesta berskala besar. Secara khusus, ilmu ini berhubungan dengan asal mula dan evolusi dari suatu subjek. Kosmologi dipelajari dalam astronomi, filosofi, dan agama. Lihat juga kosmogoni.

Kosmologi fisik

Ledakan Dahsyat
Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
(Dialihkan dari Dentuman Dahsyat)
Ini adalah artikel bagus. Klik untuk informasi lebih lanjut.
"Big Bang" beralih ke halaman ini. Untuk kegunaan lain dari Big Bang, lihat Big Bang (disambiguasi).


Menurut model ledakan dahsyat, alam semesta mengembang dari keadaan awal yang sangat padat dan panas dan terus mengembang sampai sekarang. Secara umum, pengembangan ruang semesta yang mengandung galaksi-galaksi dianalogikan seperti roti kismis yang mengembang. Gambar di atas merupakan gambaran konsep artis yang mengilustrasikan pengembangan salah satu bagian dari alam semesta rata.
Ledakan Dahsyat atau Dentuman Besar (bahasa Inggris: Big Bang) merupakan sebuah peristiwa yang menyebabkan pembentukan alam semesta, berdasarkan kajian kosmologi tentang bentuk awal dan perkembangan alam semesta (dikenal juga dengan Teori Ledakan Dahsyat atau Model Ledakan Dahysat). Berdasarkan pemodelan ledakan ini, alam semesta, awalnya dalam keadaan sangat panas dan padat yang mengembang pesat, secara terus menerus hingga hari ini. Berdasarkan pengukuran terbaik tahun 2009, keadaan awal alam semesta bermula sekitar 13,7 miliar tahun lalu,[1][2] yang kemudian selalu menjadi rujukan sebagai waktu terjadinya Big Bang tersebut.[3][4] Teori ini telah memberikan penjelasan paling komprehensif dan akurat yang didukung oleh metode ilmiah beserta pengamatan.[5][6]
Adalah Georges Lemaître, seorang biarawan Katolik Roma Belgia, yang mengajukan teori ledakan dahsyat mengenai asal usul alam semesta, walaupun ia menyebutnya sebagai "hipotesis atom purba". Kerangka model teori ini bergantung pada relativitas umum Albert Einstein dan beberapa asumsi-asumsi sederhana, seperti homogenitas dan isotropi ruang. Persamaan yang mendeksripsikan teori ledakan dahsyat dirumuskan oleh Alexander Friedmann. Setelah Edwin Hubble pada tahun 1929 menemukan bahwa jarak bumi dengan galaksi yang sangat jauh umumnya berbanding lurus dengan geseran merahnya, sebagaimana yang disugesti oleh Lemaître pada tahun 1927, pengamatan ini dianggap mengindikasikan bahwa semua galaksi dan gugus bintang yang sangat jauh memiliki kecepatan tampak yang secara langsung menjauhi titik pandang kita: semakin jauh, semakin cepat kecepatan tampaknya.[7]
Jika jarak antar gugus-gugus galaksi terus meningkat seperti yang terpantau sekarang, semuanya haruslah pernah berdekatan pada masa lalu. Gagasan ini secara rinci mengarahkan pada suatu keadaan massa jenis dan suhu yang sebelumnya sangat ekstrem.[8][9][10] dan berbagai pemercepat partikel raksasa telah dibangun untuk percobaan dan menguji kondisi tersebut, yang menjadikan teori tersebut dapat konfirmasi dengan signifikan, walaupun pemercepat-pemercepat ini memiliki kemampuan yang terbatas untuk menyelidiki fisika partikel. Tanpa adanya bukti apapun yang berhubungan dengan pengembangan awal yang cepat, teori ledakan dahsyat tidak dan tidak dapat memberikan beberapa penjelasan seperti kondisi awal, melainkan mendeskripsikan dan menjelaskan perubahan umum alam semesta sejak pengembangan awal tersebut. Kelimpahan unsur-unsur ringan yang terpantau di seluruh kosmos sesuai dengan prediksi kalkulasi pembentukan unsur-unsur ringan melalui proses nuklir di dalam kondisi alam semesta yang mengembang dan mendingin pada awal beberapa menit kemunculan alam semesta sebagaimana yang diuraikan secara terperinci dan logis oleh nukleosintesis ledakan dahsyat.
Fred Hoyle mencetuskan istilah Big Bang pada sebuah siaran radio tahun 1949. Dilaporkan secara luas bahwa, Hoyle yang mendukung model kosmologis alternatif "keadaan tetap" bermaksud menggunakan istilah ini secara peyoratif, namun Hoyle secara eksplisit membantah hal ini dan mengatakan bahwa istilah ini hanyalah digunakan untuk menekankan perbedaan antara dua model kosmologis ini.[11][12][13] Hoyle kemudian memberikan sumbangsih yang besar dalam usaha para fisikawan untuk memahami nukleosintesis bintang yang merupakan lintasan pembentukan unsur-unsur berat dari unsur-unsur ringan secara reaksi nuklir. Setelah penemuan radiasi latar mikrogelombang kosmis pada tahun 1964, kebanyakan ilmuwan mulai menerima bahwa beberapa skenario teori ledakan dahsyat haruslah pernah terjadi.

Prinsip kosmologi

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Prinsip kosmologi tidaklah benar-benar sebuah prisip, melainkan asumsi yang digunakan untuk membatasi dari begitu banyaknya teori kosmologi yang mungkin. Prinsip ini diturunkan dari pengamatan alam semesta dalam skala besar, dan menyatakan bahwa
Pada skala yang besar, alam semesta adalah homogen dan isotropik.
Dalam sudut pandang kosmologi, galaksi merupakan struktur yang sangat kecil di alam semesta. Bahkan kluster galaksi (yang dapat beranggotakan hingga ribuan galaksi) pun hanyalah sebuah fluktuasi kecil dalam hal kerapatan alam semesta. Dengan demikian, pada skala besar, alam semesta tampak memiliki kerapatan yang sama dimana pun kita berada. Pada skala ini kita tidak lagi memiliki acuan arah atau acuan tempat. Atau dengan kata lain, pada skala besar, alam semesta akan tampak sama di semua arah untuk pengamat yang berada di manapun, yang membuatnya nampak tidak terbatas luasnya. Prinsip ini konsisten dengan pengamatan dari Bumi. Berdasarkan pengamatan, prinsip tersebut menyatakan bahwa Bumi bukanlah tempat yang istimewa.


Hukum Hubble
Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Hukum Hubble adalah salah satu hukum dalam astronomi yang menyatakan bahwa pergeseran merah dari cahaya yang datang dari galaksi yang jauh adalah sebanding dengan jaraknya. Hukum ini pertama kali dirumuskan oleh Edwin Hubble pada tahun 1929.
Jika kita menganggap bahwa pergeseran merah ini disebabkan oleh efek Doppler di mana galaksi menjauhi kita maka hal ini membawa kita pada suatu gambaran tentang alam semesta yang mengembang dan, dengan melakukan ekstrapolasi waktu ke belakang, kita sampai pada teori dentuman dahsyat atau Big Bang. Hubble membandingkan jarak ke galaksi dekat dengan pergeseran merah mereka, dan menemukan hubungan yang linear. Perkiraannya tentang suatu konstanta perbandingan ini dikenal dengan nama konstanta Hubble (dan sekarang juga dikenal sebagai "parameter Hubble" karena ternyata hal ini bukanlah sekedar konstanta, melainkan suatu parameter yang tergantung pada waktu yang menandakan perluasan alam semesta yang dipercepat), sebenarnya meleset dengan faktor 10. Lebih jauh lagi, jika seseoarang menggunakan pengamatan Hubble yang asli dan kemudian memakai jarak yang paling akurat dan kecepatan yang sekarang diketahui, ia akan memperoleh suatu grafik scatter plot yang acak tanpa hubungan yang jelas antara pergeseran merah dengan jarak. Sekalipun demikian, hubungan yang hampir linear antara pergeseran merah dan jarak dikuatkan oleh pengamatan setelah Hubble. Hukum ini dapat dinyatakan sebagai berikut:
v = H0 D
di mana v adalah pergeseran merah, biasanya dinyatakan dalam km/s (kecepatan di mana galaksi menjauhi kita, untuk menghasilkan pergeseran merah ini melalui efek Doppler), H0 adalah parameter Hubble (pada pengamat, seperti dilambangkan dengan indeks 0), dan D adalah jarak sekarang dari pengamat ke galaksi, yang diukur dalam megaparsec: Mpc.
Kita dapat menurunkan hukum Hubble secara matematis jika ia menganggap bahwa alam semesta mengembang (atau menyusut) dan menganggap bahwa alam semesta adalah homogeneous, yang berarti bahwa semua titik di dalamnya adalah sama.
Selama sebagian besar dari pertengahan kedua abad ke-20, nilai dari H0 diperkirakan berada di antara 50 dan 90 km/s/Mpc. Nilai dari konstanta Hubble sudah merupakan topik kontroversi yang cukup lama dan pahit antara Gérard de Vaucouleurs yang menyatakan bahwa nilainya adalah 100 dan Allan Sandage yang menyatakan bahwa nilainya adalah 50. Proyek Hubble Key benar-benar melakukan perbaikan penting dalam menentukan nilai ini dan pada bulan Mei 2001 mempublikasikan perkiraanya sekitar 72+/-8  km/s/Mpc. Pada tahun 2003 satelit WMAP menyempurnakan lebih jauh menjadi 71+/-4, menggunakan cara yang sama sekali berbeda, berdasarkan pada pengukuran anisotropi pada radiasi latar belakang gelombang mikro kosmik. Angka ini kemudian dikoreksi lagi pada Agustus 2006. Berdasarkan data dari Observatorium Sinar X Chandra (Chandra X-ray Observatory), nilai konstanta Hubble ditetapkan pada angka 70 (km/s)/Mpc, +2.4/-3.2.
Konstanta Hubble adalah "konstan" dalam arti bahwa konstanta ini dipercaya bisa dipakai untuk semua kecepatan dan jarak pada masa sekarang. Nilai dari H (yang biasa disebut sebagai parameter Hubble untuk membedakannya dengan nilai sekarang, konstanta Hubble) berkurang terhadap waktu. Jika kita menganggap bahwa semua galaksi mempertahankan kecepatannya relatif terhadap kita dan tidak mengalami percepatan atau perlambatan, maka kita memiliki D = vt dan oleh karena itu H = 1/t, di mana t adalah waktu sejak dentuman dahsyat (Big Bang). Rumus ini dapat digunakan untuk memperkirakan usia alam semesta dari H.
Berdasarkan pengamatan akhir-akhir ini, sekarang dipercaya bahwa galaksi dipercepat menjauhi kita, yang berarti bahwa H > 1/t (tetapi tetap saja berkurang terhadap waktu) dan perkiraan 1/H0 (antara 11 dan 20 milyar tahun) sebagai usia alam semesta terlalu kecil.
Ada beberapa catatan tambahan yang dapat dibuat:
  • Jarak D ke galaksi dekat dapat diperkirakan misalnya dengan membandingkan kecerahan yang tampak dengan kecerahan mutlak yang dianggap benar.
Jika galaksi itu sangat jauh, maka kita harus mengambil D sebagai jarak ke galaksi pada masa sekarang, bukan pada saat cahaya itu dipancarkan. Jarak ini sangatlah sulit untuk ditentukan.
  • Kecepatan v didefinisikan sebagai laju perubahan D.
Untuk galaksi yang cukup dekat, kecepatan v dapat ditentukan dari pergeseran merah galaksi z menggunakan rumus vzc di mana c adalah kecepatan cahaya. Akan tetapi, hanya kecepatan karena pengembangan alam semesta yang boleh dipakai: semua galaksi bergerak relatif antara satu dengan yang lain tidak tergantung pada pengembangan alam semesta, dan kecepatan relatif dari galaksi-galaksi ini, yang disebut kecepatan peculiar tidak diperhitungkan oleh hukum Hubble. Untuk galaksi-galaksi yang sangat jauh, v tidak dapat ditentukan dengan mudah dari pergeseran merah z dan bisa lebih besar dari c.
  • Sistem yang diikat oleh gravitasi, seperti galaksi atau tata surya kita, bukanlah subjek dari hukum Hubble dan tidak mengembang.

Nukleosintesis Big Bang
Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Dalam kosmologi, nukleosintesis Big Bang atau nukleosintesis primordial (bahasa Inggris Big Bang Nucleosynthesis = BBN) merujuk pada produksi inti selain H-1, hidrogen normal, selama fase awal alam semesta, beberapa saat setelah Big Bang. Dipercaya bahwa peristiwa ini bertangungjawab pada pembentukan hidrogen (H-1 atau H) dan isotopnya yaitu deuterium (H-2 atau D), isotop helium He-3 dan He-4, dan isotop lithium Li-7.

Karakteristik nukleosintesis Big Bang

Terdapat dua karakteristik penting dari BBN:
  • BBN berlangsung hanya dalam waktu tiga menit (selama periode dari 100 hingga sekitar 300 detik dari awal ekspansi ruang); setelah itu, temperatur dan kerapatan alam semesta menurun hingga di bawah harga yang dibutuhkan untuk melangsungkan fusi nuklir. Peristiwa BBN yang singkat ini memainkan peranan penting dalam evolusi alam semesta karena mencegah terbentuknya elemen-elemen yang lebih berat daripada berilium dimana pada saat yang sama elemen ringan yang tidak ikut terbakar pada fusi nuklir awal, seperti deuterium, tetap eksis.
  • BBN berlangsung secara menyeluruh, mencakup seluruh alam semesta (saat itu).
Parameter kunci dalam menghitung efek BBN adalah jumlah foton per baryon. Parameter ini berhubungan dengan temperatur dan kerapatan alam semesta awal sehingga kondisi dimana fusi nuklir terjadi dapat ditentukan. Selanjutnya kita dapat menurunkan kelimpahan elemen. Perhitungan berdasarkan teori Big Bang yang kita yakini saat ini, peristiwa BBN menghasilkan sekitar 75% H-1, sekitar 25% helium-4, sekitar 0.01% deuterium, sedikit lithium dan berilium, dan tanpa elemen-elemen berat yang lain. Kelimpahan yang teramati saat ini konsisten dengan jumlah tersebut sehingga merupakan salah satu bukti yang mendukung teori Big Bang. Persentase kelimpahan ini merupakan presentasi massa.

Urut-urutan BBN

Nukleosintesis Big Bang dimulai satu menit setalah Big Bang, ketika alam semesta cukup dingin untuk membentuk proton dan netron, setelah bariogenesis. Dari perhitungan termodinamika sederhana, dapat dihitung fraksi proton dan netron berdasarkan temperatur pada saat itu. Fraksi ini dinyatakan dalam proton per netron, sebab netron yang bermassa lebih besar meluruh secara spontan dengan waktu paruh 15 menit. Salah satu ciri BBN adalah bahwa hukum-hukum fisika dan tetapan-tetapan yang mengatur kelakuan materi pada tingkatan energi saat itu telah dipahami dengan sangat baik, sehingga BBN bukan merupakan peristiwa yang spekulatif sebagaimana peristiwa-peristiwa lainnya di awal alam semesta.
Begitu alam semesta mengembang, dia mendingin. Netron bebas dan proton menjadi kurang stabil daripada inti helium, sehingga proton dan netron memiliki kecenderungan untuk membentuk helium-4. Namun pembentukan helium-4 membutuhkan langkah antara yaitu pembentukan deuterium. Pada saat nukleosintesis terjadi temperatur cukup tinggi, sehingga energi rata-rata per partikel lebih besar daripada energi ikat deuterium; oleh karenanya setiap deuterium yang terbentuk segera hancur kembali (situasinya dikenal sebagai deuterium bottleneck). Di sini, pembentukan helium-4 tertunda hingga alam semesta cukup dingin untuk membentuk deuterium (pada sekitar T = 0.1 MeV), dimana pembentukan elemen tersebut terjadi secara tiba-tiba dan dalam skala besar. Segera setelah itu, pada tiga menit setelah Big Bang, alam semesta menjadi terlalu dingin untuk reaksi fusi nuklir apa pun terjadi. Pada titik ini kelimpahan elemen menjadi konstan dan perubahan hanya terjadi dari peluruhan radioaktif beberapa produk BBN (seperti tritium).

Sejarah nukleosintesis Big Bang

Sejarah nukleosintesis Big Bang dimulai dengan perhitungan dari Ralph Alpher dan George Gamow pada 1940an.
Selama 1970an, terdapat masalah besar, yaitu kerapatan baryon, sebagaimana dihitung nukleosintesis Big Bang, kurang daripada massa yang teramati berdasarkan perhitungan laju ekspansi. Teka-teki ini dipecahkan melalui postulat adanya materi gelap.

Elemen Berat

Nukleosintesis Big Bang tidak menghasilkan elemen-elemen yang lebih berat daripada berilium. Tidak ada inti stabil di alam yang mengandung 8 nukleon, sehingga terdapat bottleneck yang menghentikan proses nukleosintesis hanya sampai di sini. Pada reaksi fusi nuklir yang terjadi di dalam bintang, bottleneck tersebut dilewati melalui proses triple-alpha, yaitu proses reaksi nuklir yang melibatkan tumbukan tiga inti helium-4. Namun proses triple alpha tidak dapat mengubah sejumlah besar helium menjadi karbon hanya dalam orde waktu beberapa menit. Proses triple-alpha memakan waktu puluhan ribu tahun untuk dapat mengubah helium menjadi karbon dalam jumlah yang signifikan.

 Helium-4

Nukleosintesis Big Bang memperkirakan terdapat sekitar 25% helium-4 di alam semesta, dan jumlah ini tidak bergantung pada kondisi awal alam semesta. Hal ini disebabkan helium-4 sangatlah stabil sehingga hampir semua netron akan bergabung dengan proton untuk membentuk helium-4. Sebagai tambahan, dua atom helium-4 tidak dapat bergabung untuk membentuk atom stabil, sehingga sekali helium-4 terbentuk dia tetap akan menjadi helium-4. Hal ini dapat digambarkan dengan menganalogikan helium-4 sebagai abu. Jumlah abu yang dihasilkan sebatang ranting yang dibakar adalah tetap, tidak bergantung pada bagaimana cara ranting itu dibakar.
Pengetahuan mengenai kelimpahan helium-4 menjadi penting karena ternyata didapati bahwa kelimpahan helium-4 di alam semesta lebih besar daripada yang diperkirakan dari nukleosintesis bintang. Sebagai tambahan, kelimpahan ini menjadi sebuah batu uji penting bagi teori Big Bang. Jika kelimpahan helium-4 jauh berbeda dari angka 25%, maka akan menghadirkan tantangan serius bagi teori Big Bang.

Deuterium

Kebalikan dari helium-4, deuterium sangatlah tidak stabil dan sangat mudah hancur. Karena helium-4 sangat stabil, ada kecenderungan kuat bagi dua inti deuterium untuk membentuk helium-4. Satu-satunya alasan BBN tidak mengubah semua deuterium di alam semesta menjadi helium-4 adalah ekspansi membuat alam semesta mendingin dan memotong pengubahan ini. Tidak seperti helium-4, jumlah deuterium di alam semesta bergantung pada kondisi awal alam semesta. Makin padat alam semesta, makin banyak deuterium yang terkonversi.
Sampai kini tidak diketahui proses yang dapat memproduksi deuterium dalam jumlah signifikan selain proses BBN. Pengamatan kelimpahan deuterium menyarankan bahwa usia alam semesta tidaklah tidak terbatas, yang sesuai dengan teori Big Bang.
Selama dekade 1970an, dilakukan upaya besar untuk menemukan proses yang dapat memproduksi deuterium, yang pada gilirannya menjadi upaya untuk memproduksi isotop yang lebih berat daripada deuterium. Masalahnya adalah ketika konsentrasi deuterium di alam semesta konsisten dengan model Big Bang, harga tersebut terlalu tinggi untuk konsisten dengan model yang menduga bahwa kebanyakan alam semesta terdiri dari proton dan netron. Jika kita mengasumsikan bahwa alam semesta keseluruhannya terdiri dari proton dan netron, kerapatan alam semesta akan sedemikian sehingga kebanyakan deuterium yang teramati sekarang sudah terbakar menjadi helium-4.
Ketidakkonsistenan antara pengamatan deuterium dan pengamatan laju ekspansi alam semesta membawa kepada usaha untuk menemukan proses memproduksi deuterium. Setelah satu dekade usaha ini, konsensus akhir adalah bahwa proses ini tidak mungkin terjadi, dan penjelasan standar yang sekarang digunakan tentang kelimpahan deuterium adalah bahwa alam semesta kebanyakan tidak terdiri dari baryon, dan bahwa materi non-baryonik (disebut juga sebagai materi gelap) mendominasi massa materi alam semesta.
Sangat sulit menjelaskan proses fusi nuklir yang dapat menghasilkan deuterium. Proses ini mensyaratkan temperatur yang cukup tinggi bagi terbentuknya deuterium, tetapi tidak cukup tinggi bagi produksi helium-4, dan proses ini harus terdinginkan secara tiba-tiba hingga mencapai temperatur non-nuklir tidak lebih dari beberapa menit saja dan juga diperlukan kondisi agar deuterium segera tersapu keluar dari proses sebelum bergabung dengan yang lain membentuk helium-4.
Memproduksi deuterium dari fisi nuklir juga sangat sulit. Deuterium sangat tunduk pada proses nuklir, dan tumbukan di antara inti atom mungkin menghasilkan penyerapan inti, atau pelepasan netron-netron bebas atau partikel alpha. Selama 1970an, usaha-usaha dilakukan dengan menggunakan sinar kosmik yang ditumbukkan pada sebuah obyek (cosmic ray spallation) untuk menghasilkan deuterium. Usaha-usaha ini gagal tetapi secara tidak terduga menghasilkan elemen-elemen ringan yang lain.

Status dan Implikasi BBN

Teori BBN memberikan deskripsi matematik yang detail mengenai produksi elemen-elemen ringan seperti deuterium, helium-3, helium-4, dan lithium-7. Lebih Khusus lagi, BBN menghasilkan prediksi kuantitatif yang teliti mengenai komposisi elemen-elemen tersebut di masa-masa awal terbentuknya alam semesta, yang disebut juga sebagai kelimpahan primordial.
Seperti yang telah diuraikan di atas, dalam gambaran standar BBN, semua kelimpahan elemen ringan bergantung pada jumlah materi biasa (baryon) relatif terhadap radiasi (foton). Karena berdasarkan prinsip kosmologi alam semesta adalah homogen, maka ia akan mempunyai satu harga yang unik untuk rasio baryon terhadap foton (tetapi harga ini masih belum diketahui). Pertanyaan berikut dapat diajukan untuk menguji teori BBN terhadap pengamatan: dapatkah semua pengamatan elemen ringan dijelaskan dengan sebuah "harga tunggal" rasio baryon terhadap foton? Atau lebih tepat lagi, untuk mendapatkan satu rentang ketelitian tertentu dari prediksi dan pengamatan, dapat ditanyakan: adakah suatu "rentang" harga rasio baryon terhadap foton yang dapat berlaku untuk seluruh pengamatan?
Jawaban saat ini adalah ya: prediksi elemen ringan BBN dapat dipersatukan dengan pengamatan untuk sebuah rentang harga baryon terhadap foton, dengan ketidakpatian teoritis dan pengamatan dimasukkan ke dalam perhitungan. Kecocokan ini merupakan keberhasilan kosmologi modern: BBN berhasil mengekstrapolasikan kandungan dan kondisi alam semesta sekarang (yang berusia sekitar 14 milyar tahun) kembali hingga saat dia baru berumur satu detik, dan hasilnya sesuai dengan pengamatan.

Teori BBN non-standar

Sebagai tambahan pada skenario BBN standar, terdapat beberapa skenario BBN yang tidak standar. Terdapat berbagai macam alasan dalam meneliti BBN non-standar. Pertama, lebih bersifat sejarah, adalah untuk memecahkan ketidakkonsistenan antara prediksi BBN dan pengamatan. Tetapi hal ini telah dibuktikan oleh metode dan instrumen pengamatan yang makin baik. Yang kedua, merupakan fokus pengembangan teori BBN non-standar di awal abad ke-21, yaitu menggunakan BBN untuk mencari batas-batas fisika spekulatif. Sebagai contoh, BBN standar mengasumsikan bahwa tidak ada partikel hipotetik eksotik yang terlibat dalam BBN, tetapi seseorang dapat memasukkan partikel hipotetik (seperti neutrino masif) dan melihat apakah yang akan terjadi.

Materi gelap
Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Materi gelap adalah materi yang tidak dapat dideteksi dari radiasi yang dipancarkan atau penyerapan radiasi yang datang ke materi tersebut, tetapi kehadirannya dapat dibuktikan dari efek gravitasi materi-materi yang tampak seperti bintang dan galaksi. Perkiraan tentang banyaknya materi di dalam alam semesta berdasarkan efek gravitasi selalu menunjukkan bahwa sebenarnya ada jauh lebih banyak materi daripada materi yang dapat diamati secara langsung. Terlebih lagi, adanya materi gelap dapat menyelesaikan banyak ketidakkonsistenan dalam teori dentuman dahsyat.
Sebagian besar massa di alam semesta dipercaya berada dalam bentuk ini. Menentukan sifat dari materi gelap juga dikenal sebagai masalah materi gelap atau masalah hilangnya massa, dan merupakan salah satu masalah penting dalam kosmologi modern.
Pertanyaan tentang adanya materi gelap mungkin tampak tidak relevan dengan keberadaan kita di bumi. Akan tetapi, ada atau tidaknya materi gelap ini dapat menentukan takdir terakhir dari alam semesta. Kita mengetahui bahwa sekarang alam semesta mengalami pengembangan karena cahaya dari benda langit yang jauh menunjukkan adanya pergeseran merah. Banyaknya materi biasa yang terlihat di alam semesta tidaklah cukup untuk membuat gravitasi menghentikan pengembangan, dan dengan demikian pengembangan akan berlanjut selamanya tanpa adanya materi gelap. Pada prinsipnya, jumlah materi gelap yang cukup di alam semesta dapat menyebabkan pengembangan alam semesta berhenti, atau kebalikannya (yang akhirnya membawa kita pada Big Crunch). Pada prakteknya, sekarang banyak anggapan bahwa gerakan-gerakan alam semesta didominasi oleh komponen lainnya, energi gelap.

Energi gelap

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Dalam kosmologi, energi gelap adalah suatu bentuk hipotesis dari energi yang mengisi seluruh ruang dan memiliki tekanan negatif yang kuat. Menurut teori relativitas umum, efek dari adanya tekanan negatif secara kualitatif serupa dengan memiliki gaya pada skala besar yang bekerja secara berlawanan terhadap gravitasi. Menggunakan efek seperti itu sekarang merupakan cara yang sering dilakukan untuk menjelaskan pengamatan mengenai pengembangan alam semesta yang dipercepat dan juga adanya bagian besar dari massa yang hilang di alam semesta.
Dua bentuk energi gelap yang diusulkan adalah konstanta kosmologi, suatu energi yang kerapatannya tetap dan secara homogen mengisi ruang, dan quintessence, suatu medan dinamis yang kepadatan energinya dapat berubah dalam ruang dan waktu. Membedakan antara keduanya memerlukan pengukuran berketelitian tinggi dari pengembangan alam semesta untuk dapat mengerti bagaimana kecepatan pengembangan berubah terhadap waktu. Laju pengembangan ini bergantung pada parameter persamaan keadaan kosmologi. Mengukur persamaan keadaan dari energi gelap adalah salah satu usaha besar dalam kosmologi observasional.

Bukti dari adanya Energi gelap

Pada tahun 1998, pengamatan Supernova tipe Ia oleh dua grup yang berbeda yaitu, High-Z SN Search Team pimpinan Dr. Brian Schmidt dan Supernova Cosmology Project (SCP) pimpinan Dr. Saul Perlmutter, menunjukkan bahwa pengembangan alam semesta mengalami percepatan. Dalam beberapa tahun terakhir, pengamatan ini telah dikuatkan oleh beberapa sumber: radiasi kosmik gelombang mikro latar belakang, pelensaan gravitasi, usia alam semesta, nukleosintesis dentuman dahsyat, struktur kosmos berskala besar dan pengukuran dari parameter Hubble, dan juga pengukuran supernova yang lebih baik. Semua elemen ini konsisten dengan model Lamda-CDM.
Supernova tipe Ia memberikan bukti paling langsung dari adanya energi gelap. Dengan mengukur kecepatan dari objek yang menjauh menggunakan pengukuran pergeseran merah, yang merupakan efek Doppler radiasi dari objek yang menjauh. Menentukan jarak dari suatu objek adalah masalah yang sulit dalam astronomi. Kita perlu menemukan lilin standard: obyek yang diketahui kecerlangan intrinsiknya, sehingga mungkin digunakan untuk menghubungkan kecerlangan yang tampak dengan jarak. Tanpa lilin standard, tidaklah mungkin mengukur hubungan pergeseran merah dengan jarak dalam hukum Hubble. Supernova tipe Ia adalah lilin standard terbaik untuk pengamatan kosmologi, karena mereka sangat terang dan hanya terjadi ketika massa dari bintang katai putih tua mencapai batas Chandrasekhar. Jarak ke supernova dapat digambar terhadap kecepatan, dan inilah yang digunakan untuk mengukur sejarah pengembangan alam semesta. Pengamatan ini menunjukkan bahwa alam semesta tidak mengalami perlambatan, yang seharusnya akan terjadi pada alam semesta yang didominasi oleh materi, tetapi justru secara misterius mengalami percepatan. Pengamatan ini dapat dijelaskan dengan membuat postulat tentang adanya sejenis energi yang memiliki persamaan keadaan yang negatif, yaitu energi gelap.
Keberadaan energi gelap, dalam bentuk apapun, juga memecahkan masalah yang disebut "massa yang hilang". Teori nukleosintesis dentuman dahsyat mengatur pembentukan unsur-unsur ringan pada awal alam semesta, seperti helium, deuterium, dan litium. Teori struktur kosmos berskala besar mengatur pembentukan struktur alam semesta, bintang, kuasar, galaksi dan gugus galaksi. Kedua teori ini menunjukkan bahwa kepadatan baryon dan materi gelap yang dingin di alam semesta adalah sekitar 30% dari kepadatan kritikal untuk alam semesta yang tertutup. Ini adalah kepadatan yang diperlukan untuk membuat bentuk alam semesta rata. Pengukuran radiasi kosmik gelombang mikro latar belakang, baru-baru ini menggunakan satelit WMAP, menunjukkan bahwa alam semesta hampir datar. Oleh karena itu, kita tahu bahwa suatu bentuk energi pasti mengisi 70% yang lainnya.

Sejarah Kosmologi

Empat ribu tahun yang lalu Babilonia mempunyai ahli astronomi terlatih. untuk memprediksi gerakan yangnyata dari sebuah bulan, bintang-bintang, planet-planet dan matahari di atas langit, dan juga memprediksi terjadinya gerhana. Akan tetapi, nenek moyang Yunani-lah yang pertama kali membuat sebuah model kosmologi untuk menginterpretasikan gerakan ini. Pada abad ke-4 sebelum Masehi, mereka mempunyai sebuah ide bahwasannya bintang-bintang berada pada sebuah lingkaran angkasa yang berotasi pada bola dunia setiap 24 jam, dan planet-planet, matahari, dan bulan, berpindah di antara bumi dan bintang-bintang.


Model ini di buat beberapa abad yang lalu, puncaknya pada abad ke-2 sesudah Masehi dengan ditemukannya sistem Ptolemi. Gerakan yang sempurna harus berada di dalam lingkaran, maka bintang-bintang dan planet-planet bergerak di dalam lingkaran. Untuk menghitung gerakan yang komplek dari planet-planet digunakan epicides maka perpindahan planet-planet di lingkaran melalui lingkaran sekitar arah bumi.


Meskipun hal ini adalah sebuah struktur yang kompleks. Ptolemy membuat sebuah model yang berhasil memproduksi gerakan yang terjadi pada sebuah planet, pada abad 16. Ketika Copernicus mengusulkan sebuah sistem heliosentrik, dia tidak bisa menyesuaikan dengan keakuratan sistem pusat bumi yang dimiliki Ptolemy. Ptolemy memmbuat sebuah model dimana bumi berotasi dan bersama-sama dengan planet lainnya berpindah dalam sebuah orbit sirkular matahari. Akan tetapi, bukti penelitian pada waktu itu sangat mendukung pada sistem Ptolemaic.

Ada banyak alasan lainnya mengapa para ahli astronomi menolak dugaan Copernicus yang menyatakan bahwa bumi mengorbit pada matahari. Tycho Brane seorang astronomi terbesar pada abad 16 menyatakan bahwa jika bumi mengitari matahari, maka posisi relatif bintang-bintang akan berubah seperti yang terlihat dari bagian-bagian yang berbeda pada orbit bumi. Akan tetapi, tidak ada bukti dalam hal ini, disebut dengan parallax. Walaupun bumi tetap atau tidak, bintang-bintang akan menjadi semakin jauh secara mengejutkan.


Dengan bantuan dari sebuah penemuan terbaru, yaitu teleskop, di awal abad 17 Galileo menyatakan bahwa suatu hal yang fatal pada anggapan bahwa bumi adalah pusat dari alam ini. Dia menemukan bulan mengorbit pada planet Jupiter. Dan jika bulan dapa mengorbit pada planet lain, mengapa planet-planet itu tidak mengorbit pada matahari ?


Pada waktu yang sama, Tycho Brane asisten Keppler menemukan kunci untuk membuat sebuah model heliocentrik. Planet-planet berpindah dalam bulatan panjang, bukan lingkaran yang sempurna, seperti matahari. Terakhir Newton menunjukkan bahwa gerakan berbentuk bulat panjang di jelaskan dengan hukum kuadrat berbalik pada kekuatan gravitasi.


Tapi banyaknya penelitian parallax dalam posisi yang menarik dari sebuah bintang-bintang seperti bumi yang berotasi pada matahari, mengindikasikan bahwa bintang-bintang mempunyai jarak yang sangat jauh dari matahari. Kosmos kelihatan menjadi sebuah laut yang luas terdiri dari bintang-bintang, jika dilihat dengan bantuan teleskop. Galileo menemukan 4 ribu bintang-bintang baru di mana mereka tidak dapat dilihat oleh mata telanjang. Newton menyimpulkan bahwa alam merupakan sebuah lautan bintang-bintang yang abadi dan tak terbatas, seperti matahari kita.


Tidak sampai pada abad ke-19 ketika para ahli astronomi dan matematikawan Bessel pada akhirnya dapat mengukur jarak ke bintang dengan menggunakan Parallax. Bintang yang terdekat (selain dari matahari) sekitar 25 juta, juta mil jauhnya ! ( dengan membandingkan matahari yang jauhnya 93 juta mil dari bumi)


Kebanyakan dari bintang-bintang yang dpaat kita lihat terdapat di Milky Way-kumpulan bintang-bintang yang terang yang terbentang di langit pada malam hari. Kant dan yang lainnya menunjukkan bahwa Miky Way merupakan sebuah lensa yang disebut 'pulau dunia' atau galaksi, dan di atas Milky Way masih ada banyak galaksi lain.


Seperti bintang-bintang dan planet-planet, para ahli astronomi menemukan titik kabur cahaya pada malam hari, mereka menyebutnya dengan nebula. beberapa ahli astronomi berpendapat bahwa ini adalah galaksi yang jauh. Pada tahun 1920 ahli astronomi Amerika Hubble menemukan beberapa nebula di mana ukurannya sama seperti bintang jauh dalam Milky Way.

Hubble juga membuat penemuan yang luar biasa bahwa galaksi terlihat berpindah menjauhi kami, dengan sebuah kecepatan yang seimbang sesuai jaraknya dari kami. Ini kelihatannya lebih realistas dan merupakan penjelasan yang nyata dalam penemuan Einstein dengan teori Relativitas : Alam semesta kami adalah luas !


mungkin saja, Einstein telah memprediksi bahwa alam semesta ini luas, sesudah mengajukan teori pertamanya di tahun 1915. Masalah ini cenderung pada jatuh secara bersama-sama karena gravitasi maka tidaklah mungkin untuk menyatakan bahwa alam semesta itu tidak bergerak. Einstein menyadari ia dapat menggunakan ketetapan arbitrer pada persamaan matematikanya, yang dapat menyeimbangkan kekuatan gravitasi dan tidak mengikutsertakan galaksi. Hal ini dikenal dengan ketetapan kosmologi. Sesudah adanya penemuan yang menyatakan bahwa alam itu luas, Einstein mengumumkan bahwa ketepatan kosmologi adalah kekeliruan terbesar dalam hidupnya.

Ahli matematika meteorologi dari Rusia Friedmann mengatakan di tahun 1917 bahwa Einstein menghitung sebuah gambaran dari sebuah alam yang luas. Solusi ini mencantumkan bahwa alam lahir dari pada satu momen, sekitar sepuluh ribu juta tahun lalu. Semua itu, bahkan alam semesta sendiri, tercipta hanya pada satu ketika. Astronom Inggris Fred Hoyle menyebutnya sebagai "Big Bang".

Ada sebuah teori yang menjadi saingan, disebut dengan Teori Steady State diajukan oleh Bondi, Gold, dan Hoyle yang dibuat untuk menjelaskan perluasan alam raya. Hal ini membutuhkan penciptaan sesuatu yang bersambung untuk membuat galaksi-galaksi baru sebagai perluasan alam raya, menyakinkan bahwa alam raya itu dapat bertambah luas tetapi selalu tetap dalam waktu.

untuk beberapa tahun hal ini hayalah terlihat sebagai sesuatu yang akademis, dimana alam raya abadi dan dapat berubah, atau hanya eksis untuk jangka waktu yang terbatas. Tapi sebuah pukulan telak memruntuhkan model steady state ketika pada tahun 1965 Penzias dan Wislson menemukan sebuah radiasi mikrowave kosmik. Hal ini menunjukkan hasil radiasi dari sebuah ledakan besar yang panas, dimana diprediksi oleh Alpher dan Hermann di tahun 1949.

Menindaklanjuti dari kerja Gamow, Alpher dan Hermann ditahun 1940, teorinya adalah menghitung kelebihan relatif dari Hidrogen dan Helium yang mungkin dihasilkan pada saat ledakan Big Bang dan menemukan hal itu seseuai dengan pengamatan. Ketika kelebihan relatif cahaya lain dihitung keduanya konsisten dengan nilai yang diamati.


Sejak 1970, banyak ahli kosmologi yang menerima model Big Bang dan mulai bertanya lebih spesifik, tetapi tetap fundamental, pertanyaannya mengenai alam raya ini. Mengapa galaksi-galaksi dan sekelompok galaksi yang kami ini diluar dari bentuk perluasan sebelumnya. Alam raya ini terbuat dari apa ? bagaimana kami mengetahui bahwa tidak ada lubang hitam atau bentuk-bentuk hitam di atas sana yang tidak bersinar seperti bintang ? relativitas umum menyatakan bentuk kurva ruang waktu, lalu bagaimanakah bentuk alam raya ? apakah ada sebuah kosmologi yang tetap sesudah itu ?


Kami hanya akan menjawab beberapa pertanyaan saja. Latar belakang radiasi gelombang mikro kosmik memainkan peranan penting dengan memberikan gambaran tentang alam semesta hanya seratus ribu tahun setelah Bing Bang. Hal ini adalah urutan yang luar biasa, pada tahun 1992 satelit Cosmic Background Explorer NASA mendeteksi anisotropies pertama pada latar belakang radiasi. Ada sedikit fluktuasi pada suhu radiasi, sekitar satu bagian per 500.000, mungkin awal dari terbentuknya galaksi.


Sejak awal 1980, ada sebuah penelitian yang menarik dari bentuk fisik awal alam raya. Teknologi baru dan penelitian dengan satelit, seperti teleskop Hubbie memberikan gambaran dari alam raya ini, menginspirasikan teori baru untuk meghasilkan lebih banyak model-model yang lebih hebat.





Topik lain